Electrical System

Table of Contents

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precaution</td>
<td>15-2</td>
</tr>
<tr>
<td>Exploded View</td>
<td>15-3</td>
</tr>
<tr>
<td>Specifications</td>
<td>15-6</td>
</tr>
<tr>
<td>Special Tools</td>
<td>15-7</td>
</tr>
<tr>
<td>Sealant</td>
<td>15-7</td>
</tr>
<tr>
<td>Parts Location</td>
<td>15-8</td>
</tr>
<tr>
<td>Wiring Diagram (ZX400-L1 ~ L4)</td>
<td>15-9</td>
</tr>
<tr>
<td>Wiring Diagram (ZX400-L5)</td>
<td>15-10</td>
</tr>
<tr>
<td>Battery</td>
<td>15-11</td>
</tr>
<tr>
<td>Charging Condition Inspection</td>
<td>15-11</td>
</tr>
<tr>
<td>Refreshing Charge</td>
<td>15-11</td>
</tr>
<tr>
<td>Charging System</td>
<td>15-12</td>
</tr>
<tr>
<td>Alternator Cover Removal</td>
<td>15-12</td>
</tr>
<tr>
<td>Alternator Cover Installation</td>
<td>15-12</td>
</tr>
<tr>
<td>Alternator Rotor Removal</td>
<td>15-13</td>
</tr>
<tr>
<td>Alternator Rotor Installation Notes</td>
<td>15-13</td>
</tr>
<tr>
<td>Stator Coil Removal</td>
<td>15-14</td>
</tr>
<tr>
<td>Stator Installation Notes</td>
<td>15-14</td>
</tr>
<tr>
<td>Alternator Inspection</td>
<td>15-14</td>
</tr>
<tr>
<td>Rectifier Inspection</td>
<td>15-15</td>
</tr>
<tr>
<td>Regulator Inspection</td>
<td>15-16</td>
</tr>
<tr>
<td>Regulator/Rectifier Output</td>
<td></td>
</tr>
<tr>
<td>Voltage Inspection</td>
<td>15-17</td>
</tr>
<tr>
<td>Ignition System</td>
<td>15-17</td>
</tr>
<tr>
<td>Pickup Coil Removal</td>
<td>15-17</td>
</tr>
<tr>
<td>Pickup Coil Installation</td>
<td>15-17</td>
</tr>
<tr>
<td>Pickup Coil Inspection</td>
<td>15-17</td>
</tr>
<tr>
<td>Ignition Coil Removal</td>
<td>15-18</td>
</tr>
<tr>
<td>Ignition Coil Installation</td>
<td>15-18</td>
</tr>
<tr>
<td>Ignition Coil Inspection</td>
<td>15-18</td>
</tr>
<tr>
<td>Spark Plug Removal</td>
<td>15-19</td>
</tr>
<tr>
<td>Spark Plug Installation Note</td>
<td>15-20</td>
</tr>
<tr>
<td>Spark Plug Cleaning and Inspection</td>
<td>15-20</td>
</tr>
<tr>
<td>Spark Plug Gap Inspection</td>
<td>15-20</td>
</tr>
<tr>
<td>IC Igniter Inspection</td>
<td>15-20</td>
</tr>
<tr>
<td>Electric Starter System</td>
<td>15-21</td>
</tr>
<tr>
<td>Starter Motor Removal</td>
<td>15-21</td>
</tr>
<tr>
<td>Starter Motor Installation</td>
<td>15-21</td>
</tr>
<tr>
<td>Starter Motor Disassembly</td>
<td>15-21</td>
</tr>
<tr>
<td>Starter Motor Assembly Note</td>
<td>15-22</td>
</tr>
<tr>
<td>Brush Inspection</td>
<td>15-22</td>
</tr>
<tr>
<td>Commutator Cleaning and Inspection</td>
<td>15-22</td>
</tr>
<tr>
<td>Armature Inspection</td>
<td>15-22</td>
</tr>
<tr>
<td>Brush Lead Inspection</td>
<td>15-23</td>
</tr>
<tr>
<td>Brush Plate and Terminal Bolt Inspection</td>
<td>15-23</td>
</tr>
<tr>
<td>Starter Relay Inspection</td>
<td>15-23</td>
</tr>
<tr>
<td>Lighting System</td>
<td>15-25</td>
</tr>
<tr>
<td>Headlight Beam Horizontal Adjustment</td>
<td>15-25</td>
</tr>
<tr>
<td>Headlight Beam Vertical Adjustment</td>
<td>15-25</td>
</tr>
<tr>
<td>Headlight Bulb Replacement Notes</td>
<td>15-25</td>
</tr>
<tr>
<td>Headlight Unit Removal/Installation Note</td>
<td>15-26</td>
</tr>
<tr>
<td>Tail/Brake Light Bulb Replacement Notes</td>
<td>15-26</td>
</tr>
<tr>
<td>Turn Signal Light Bulb Replacement Note</td>
<td>15-26</td>
</tr>
<tr>
<td>Turn Signal Relay Inspection</td>
<td>15-26</td>
</tr>
<tr>
<td>Cooling Fan System</td>
<td>15-29</td>
</tr>
<tr>
<td>Fan System Circuit Inspection</td>
<td>15-29</td>
</tr>
<tr>
<td>Fan Inspection</td>
<td>15-29</td>
</tr>
<tr>
<td>Fan Installation</td>
<td>15-29</td>
</tr>
<tr>
<td>Fuel Pump</td>
<td>15-30</td>
</tr>
<tr>
<td>Fuel Pump Relay Inspection</td>
<td>15-30</td>
</tr>
<tr>
<td>Pump Operation Inspection</td>
<td>15-30</td>
</tr>
<tr>
<td>Meters, Gauges</td>
<td>15-31</td>
</tr>
<tr>
<td>Removal</td>
<td>15-31</td>
</tr>
<tr>
<td>Bulb Replacement</td>
<td>15-31</td>
</tr>
<tr>
<td>Meter, Gauge Assembly Note</td>
<td>15-32</td>
</tr>
<tr>
<td>Tachometer Inspection</td>
<td>15-32</td>
</tr>
<tr>
<td>Water Temperature Gauge</td>
<td>15-32</td>
</tr>
<tr>
<td>Operation Inspection</td>
<td>15-32</td>
</tr>
<tr>
<td>Water Temperature Sensor Inspection</td>
<td>15-34</td>
</tr>
<tr>
<td>Fan Switch Inspection</td>
<td>15-34</td>
</tr>
<tr>
<td>Junction Box</td>
<td>15-35</td>
</tr>
<tr>
<td>Fuse Removal</td>
<td>15-35</td>
</tr>
<tr>
<td>Fuse Installation</td>
<td>15-35</td>
</tr>
<tr>
<td>Fuse Inspection</td>
<td>15-35</td>
</tr>
<tr>
<td>Junction Box Fuse Circuit Inspection</td>
<td>15-35</td>
</tr>
<tr>
<td>Starter Circuit</td>
<td>15-36</td>
</tr>
<tr>
<td>Diode Circuit Inspection</td>
<td>15-36</td>
</tr>
<tr>
<td>Electrical Wiring</td>
<td>15-38</td>
</tr>
<tr>
<td>Wiring Inspection</td>
<td>15-38</td>
</tr>
</tbody>
</table>
Precautions

There are numbers of important precautions that are musts when servicing electrical systems. Learn and observe all the rules below.

○ Do not reverse the battery lead connections. This will burn out the diodes in the electrical parts.

○ Always check battery condition before condemning other parts of an electrical system. A fully charged battery is a must for conducting accurate electrical system tests.

○ The electrical parts should never be struck sharply, as with a hammer, or allowed to fall on a hard surface. Such a shock to the parts can damage them.

○ To prevent damage to electrical parts, do not disconnect the battery leads or any other electrical connections when the ignition switch is on, or the engine is running.

○ Do not use a meter illumination bulb rated for other than the voltage or wattage specified in the wiring diagram, as the meter or gauge panel could be warped by excessive heat radiated from the bulb.

○ Take care not to short the leads that are directly connected to the battery positive (+) terminal to the chassis ground.

○ Troubles may involve one or in some cases all items. Never replace a defective part without determining what CAUSED the failure. If the failure was caused by some other item or items, they too must be repaired or replaced, or the new replacement will soon fail again.

○ Make sure all connectors in the circuit are clean and tight, and examine wires for signs of burning, fraying, etc. Poor wires and bad connections will affect electrical system operation.

○ Measure coil and winding resistance when the part is cold (at room temperature).

○ Color Codes:
 BK Black
 BL Blue
 BR Brown
 CH Chocolate
 DG Dark green
 G Green
 GY Gray
 LB Light blue
 LG Light green
 O Orange
 P Pink
 PU Purple
 R Red
 W White
 Y Yellow
1. Stator Coil
2. Fuel Pump Relay
3. Fuel Pump
4. Starter Relay
5. Pickup Coil
6. IC Igniter
7. Regulator

T1: 2.5 N·m (0.25 kg·m, 22 in-lb)
T2: 5.9 N·m (0.6 kg·m, 52 in-lb)
T3: 8.3 N·m (0.85 kg·m, 74 in-lb)
T4: 9.8 N·m (1.0 kg·m, 7.0 ft-lb)
T5: 13 N·m (1.3 kg·m, 9.5 ft-lb)
T6: 25 N·m (2.5 kg·m, 18 ft-lb)
T7: 34 N·m (3.5 kg·m, 25 ft-lb)
T8: 78 N·m (8.0 kg·m, 58 ft-lb)

L: Apply a non-permanent locking agent to the threads.
M: Apply molybdenum disulfide grease.
H: Hand-Tight
8. Cooling Fan Switch

T9 : 18 N·m (1.8 kg·m, 13 ft·lb)

UK : U.K. Model
AR : Austrian Model
FG : German Model
9. Speedometer Cable
10. Neutral Switch
11. Oil Pressure Switch
12. Headlight Relay
13. Turn Signal Relay
14. Front Brake Light Switch
15. Rear Brake Light Switch
16. Side Stand Switch
17. Junction Box
18. Water Temperature Sensor

T10: 15 N-m (1.5 kg-m, 11 ft-lb)
T11: 7.8 N-m (0.8 kg-m, 69 in-lb)
T12: 9.8 N-m (1.0 kg-m, 7.0 ft-lb)
G: Apply grease.
IT: Italian Model
15-6 ELECTRICAL SYSTEM

Specifications

<table>
<thead>
<tr>
<th>Item</th>
<th>Standard</th>
<th>Service Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Battery:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>12 V 8 Ah</td>
<td></td>
</tr>
<tr>
<td>Specific gravity</td>
<td>1.32 @20°C (68°F)</td>
<td></td>
</tr>
<tr>
<td>Alternator:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Charging voltage</td>
<td>14.5 V Night @4 000 r/min (rpm)</td>
<td></td>
</tr>
<tr>
<td>Output voltage</td>
<td>Not less than 43 V @4 000 r/min (rpm)</td>
<td></td>
</tr>
<tr>
<td>Stator coil resistance</td>
<td>0.2 ~ 0.9 Ω</td>
<td></td>
</tr>
<tr>
<td>Ignition System:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pickup coil resistance</td>
<td>355 ~ 535 Ω</td>
<td></td>
</tr>
<tr>
<td>Ignition coil:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 needle arcing distance</td>
<td>7 mm or more</td>
<td></td>
</tr>
<tr>
<td>Primary winding resistance</td>
<td>2.3 ~ 3.5 Ω</td>
<td></td>
</tr>
<tr>
<td>Secondary winding resistance</td>
<td>12 ~ 18 kΩ</td>
<td></td>
</tr>
<tr>
<td>Spark plug gap</td>
<td>0.7 ~ 0.8 mm</td>
<td></td>
</tr>
<tr>
<td>Starter Motor:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbon brush length</td>
<td>7 mm</td>
<td>3.5 mm</td>
</tr>
<tr>
<td>Commutator groove depth</td>
<td>0.45 ~ 0.75 mm</td>
<td>0.2 mm</td>
</tr>
<tr>
<td>Commutator diameter</td>
<td>24 mm</td>
<td>23 mm</td>
</tr>
<tr>
<td>Fuel Pump:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fuel pump pressure</td>
<td>11 ~ 16 kPa</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.11 ~ 0.16 kg/cm², 1.6 ~ 2.3 psi)</td>
<td></td>
</tr>
<tr>
<td>Switches and Sensors:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rear brake light switch</td>
<td>ON after about 10 mm pedal travel</td>
<td></td>
</tr>
<tr>
<td>Fan switch:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OFF → ON</td>
<td>84 ~ 90°C (183 ~ 194°F)</td>
<td></td>
</tr>
<tr>
<td>ON → OFF</td>
<td>71 ~ 77°C (160 ~ 170°F)</td>
<td></td>
</tr>
<tr>
<td>Water temperature sensor resistance</td>
<td>80°C (175°F) : 47 ~ 57 Ω</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100°C (212°F) : 25 ~ 30 Ω</td>
<td></td>
</tr>
</tbody>
</table>
Special Tools

Hand Tester: 57001-1394

Flywheel Holder: 57001-1313

Coil Tester: 57001-1242

Rotor Puller, M16/M18/M20/M22 x 1.5: 57001-1216

Spark Plug Wrench, Hex 16: 57001-1262

Rotor Puller, M33 x 1.5: 57001-1277

Socket Wrench, Hex 8: 57001-1268

Sealant

Kawasaki Bond (Silicone Sealant): 56019-120

Jack: 57001-1238
1. Headlight Unit
2. Meter Unit
3. Starter Motor
4. Tail/Brake Light
5. License Light
6. Fan Switch
7. Alternator
8. Oil Pressure Switch
9. Neutral Switch
10. Side Stand Switch
11. Cooling Fan
12. Fuel Pump
13. Water Temperature Sensor
14. Turn Signal Light
15. Rear Brake Light Switch
16. Pickup Coil
17. Indicator Light
18. Ignition Switch
19. Front Brake Light Switch
20. Right Grip Switch
21. Starter Lockout Switch
22. Left Grip Switch
23. Ignition Coil (#2, 3)
24. Ignition Coil (#1, 4)
25. Spark Plugs
26. Battery
27. Junction Box
28. Fuel Pump Relay
29. IC Igniter
30. Regulator/Rectifier
31. Starter Relay
32. Turn Signal Relay
Battery

Charging Condition Inspection
Battery charging condition can be checked by measuring battery terminal voltage.

- Remove:
 - Seat
 - IC Igniter
 - Junction Box
- Disconnect the battery terminal leads.

CAUTION
Be sure to disconnect the negative terminal lead first.

- Measure the battery terminal voltage.

NOTE
- Measure with a digital voltmeter which can be read one decimal place voltage.
- If the reading is below the specified, refreshing charge is required.

Battery Terminal Voltage
- Standard: 12.6 V or more

1. Digital Voltmeter

Refreshing Charge
- Remove the battery.
- Refresh—charge by following method according to the battery terminal voltage.

CAUTION
This battery is sealed type. Never remove sealing caps even at charging. Never add water. Charge with current and time as stated below.

1. Battery
2. Sealing Cap

- Terminal Voltage: 11.5 ~ 12.6 V or less
 - Standard Charge: 0.9 A x 5 ~ 10 h
 (see following chart)
 - Quick Charge: 4.0 A x 1.0 h

CAUTION
If possible, do not quick charge. If the quick charge is done due to unavoidable circumstances, do standard charge later on.

- Terminal Voltage: 11.5 V or less
 - Charging Method: 0.9 A x 15 ~ 20 h

NOTE
- Raise the voltage initially (25 V as maximum), and charge for about 5 minutes as a yardstick. (If your meter shows no change in current after 5 minutes, you need a new battery.) The current, if it can flow into the battery, tends to become excessive. Adjust the voltage as often as possible to keep the current at standard valve (0.9 A).

1. Battery Charger
2. Battery
3. Standard Value: 0.9 A
4. After 5 minutes
5. 16
6. 0.9
15-12 ELECTRICAL SYSTEM

Battery Standard Charge Time Chart
(0.9 A Regular Current Charge)
- For Reference

- Determine battery condition after refreshing charge.
- Determine the condition of the battery 30 minutes after completion of the charge by measuring the terminal voltage according to the table below.

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Judgement</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.6 V or higher</td>
<td>Good</td>
</tr>
<tr>
<td>12.0 ~ 12.6 V or lower</td>
<td>Charge insufficient → Recharge.</td>
</tr>
<tr>
<td>12.0 V or lower</td>
<td>Unserviceable → Replace.</td>
</tr>
</tbody>
</table>

Charging System

Alternator Cover Removal
- Remove the lower fairing.
- Set a suitable container under the engine.
- Remove the alternator cover bolts, using the socket wrench (special tool: 57001-1268).

A. Alternator Cover Bolt
- Remove the alternator cover.

Alternator Cover Installation
- Replace the gasket with a new one.
- Run the stator lead as shown.
- Apply silicone sealant to the stator lead grommet.

1. Apply silicone sealant

- Apply silicone sealant to the crankcase halves mating surface on the front and rear sides of the cover mount.
Alternator Rotor Removal
- Place the jack (special tool) under the frame to steady the motorcycle.
- Place a suitable container under the alternator cover.
- Remove the alternator cover.
- Wipe oil off the outer circumference of the rotor.
- Hold the alternator rotor steady with the flywheel holder (special tool), and remove the rotor bolt.

CAUTION
If the rotor is difficult to remove, turn the puller while tapping the end of the puller covered with the cap. Do not attempt to strike the alternator rotor itself. Striking the rotor can cause the magnets to lose their magnetism.

Alternator Rotor Installation Notes
- Clean the following portions with an oil-less cleaning fluid such as trichloroethylene or acetone.

WARNING
These cleaning fluids are usually highly flammable and harmful if breathed for prolonged periods. Be sure to heed the fluid manufacturer’s warnings.

Alternator Rotor Cleaning Area
1. The tapered portion of the crankshaft.
2. The alternator rotor bolt and the threads in the crankshaft.
3. The tapered portion of the alternator rotor.
4. Chamfer
- Install the washer so that the chamfer side faces out.
- Tighten the alternator rotor bolt to the specified torque (see Exploded View) while holding the alternator rotor
15-14 ELECTRICAL SYSTEM

steady with the flywheel holder (special tool: 57001-1313).

Alternator Inspection

There are three types of alternator failures: short, open (wire burned out), or loss in rotor magnetism. A short or open in one of the coil wires will result in either a low output, or no output at all. A loss in rotor magnetism, which may be caused by dropping or hitting the alternator, by leaving it near an electromagnetic field, or just by aging, will result in low output.

- To check the alternator output voltage, do the following procedures. Refer to appropriate chapters and charging system Wiring Diagram.
- Turn off the ignition switch
- Disconnect connector 1.
- Connect the hand tester (special tool: 57001-1394) as shown in table.
- Start the engine
- Run it at the rpm given in table.
- Note the voltage readings (total 3 measurements).

<table>
<thead>
<tr>
<th>Meter Output Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
</tr>
<tr>
<td>______</td>
</tr>
<tr>
<td>250 V AC</td>
</tr>
</tbody>
</table>

- If the output voltage shows the value in table, the alternator operates properly and the regulator / rectifier is damaged. A much lower reading than that given in the table indicates that the alternator is defective.
- Check the stator coil resistance as follows:
 - Stop the engine
 - Connect the hand tester (special tool: 57001-1394) as shown in table.
 - Note the readings (total 3 measurement).

<table>
<thead>
<tr>
<th>Stator Coil Resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
</tr>
<tr>
<td>______</td>
</tr>
<tr>
<td>x 1 Ω</td>
</tr>
</tbody>
</table>

- If there is more resistance than shown in the Table, or no meter reading (infinity) for any two leads, the stator has an open lead and must be replace. Much less than this resistance means the stator is shorted, and must be replaced.
- Using the highest resistance range of the hand tester measure the resistance between each of the yellow leads and chassis ground.
- Any meter reading less than infinity (∞) indicates a short, necessitating stator replacement.
- If the stator coils have normal resistance, but the voltage check showed the alternator to be defective; then the rotor magnetism have probably weakened, and the rotor must be replaced.
Rectifier Inspection

- Check the rectifier resistance as follows.
- Remove the regulator/rectifier and disconnect the connector 2 (see Charging System Wiring Diagram).
- Connect an ohmmeter to the regulator/rectifier as shown in the Table, and check the resistance in both directions of each diode following the table.

Rectifier Circuit Inspection

<table>
<thead>
<tr>
<th>No.</th>
<th>Connections</th>
<th>Meter (+) to</th>
<th>Meter (-) to</th>
<th>Reading</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Y₁</td>
<td></td>
<td>W</td>
<td></td>
<td>∞</td>
</tr>
<tr>
<td>2</td>
<td>Y₂</td>
<td>Y₃</td>
<td>W</td>
<td></td>
<td>x 10 Ω</td>
</tr>
<tr>
<td>3</td>
<td>Y₃</td>
<td>Y₁</td>
<td>Y₂</td>
<td>1/2 scale</td>
<td>or x 100 Ω</td>
</tr>
<tr>
<td>4</td>
<td>Y₁</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Y₂</td>
<td>BK/Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Y₃</td>
<td></td>
<td>Y₁</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>W</td>
<td>Y₁</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Y₂</td>
<td>Y₃</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Y₃</td>
<td></td>
<td>Y₂</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Y₁</td>
<td></td>
<td>Y₂</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>BK/Y</td>
<td>Y₂</td>
<td>Y₁</td>
<td></td>
<td>∞</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td>Y₁</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE

- The actual meter reading varies with the meter used and the individual diode, but, generally speaking, the lower reading should be from zero to one half the scale.

Charging System Wiring Diagram

1. Alternator
2. Connector 1
3. Regulator/Rectifier
4. Connector 2
5. Diode (Rectifier)
6. Control Circuit (IC)
7. Connector 5
8. Main Fuse 30A
9. Connector 3
10. Connector 4
11. Ignition Switch
12. Headlight 10A Fuse (Junction Box)
13. Taillight 10A Fuse (Junction Box)
14. Battery
15. Load
Regulator Inspection
To test the regulator out of circuit, use three 12 V batteries and a test light made from 12 V 3 ~ 6 W bulb in a socket with leads.
- Remove the regulator/rectifier unit from the frame.
- Using auxiliary leads, connect one of the yellow lead terminal at the unit to the battery (+) terminal, and connect the test light between the black/yellow lead terminal at the unit, and the battery (−) terminal.
- At this time the bulb should not be lit.

CAUTION
The test light works as an indicator and also as a current limiter to protect the regulator/rectifier from excessive current. Do not use an ammeter instead of a test light.

- Connect the brown lead terminal to the other battery (+) terminal and connect the black/yellow lead terminal to the battery (−) terminal momentarily. At this time the bulb should not be lit.

1. Regulator/Rectifier 5. Y1 Lead Terminal
2. Test Light 6. Y2 Lead Terminal
3. 12 V Battery 7. Y3 Lead Terminal
4. BK/Y Lead Terminal

1. Regulator/Rectifier 6. BR Lead Terminal
2. Test Light 7. BK/Y Lead Terminal
3. 12 V Battery 8. Y1 Lead Terminal
4. 12 V Battery 9. Y2 Lead Terminal
5. 12 V Battery 10. Y3 Lead Terminal

CAUTION
Do not apply more than 24 volts. If more than 24 volts is applied, the regulator/rectifier may be damaged. Do not apply 24 V more than a few seconds. If 24 volts is applied for more than a few seconds, the regulator/rectifier may be damaged.

- Repeat the above three steps for other two yellow leads (in connector 2 which leads to the regulator/rectifier).
Replace the regulator/rectifier if the bulb does not light as described above.

NOTE
- The above test is not foolproof. If the above checks show the regulator/rectifier is not damaged, but there is still trouble in the charging system, first carefully inspect the alternator, battery, wiring, and all connections. Replace the regulator/rectifier if all these other components turn out good.

Regulator/Rectifier Output Voltage Inspection
- Check the battery condition (see Battery section).
- Warm up the engine to obtain actual alternator operating conditions.
- Remove the seat.
- Check that the ignition switch is turned off, and connect the hand tester as shown in table.

<table>
<thead>
<tr>
<th>Meter Range</th>
<th>Connections</th>
<th>Reading</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 V DC</td>
<td>Meter (+) to Battery (+) Black/Yellow (Connector 5)</td>
<td>Battery Voltage – 14 ~ 15 V</td>
</tr>
</tbody>
</table>

- Start the engine, and note the voltage readings at various engine speeds with the headlight turned on and then turned off. The readings should show nearly battery voltage when the engine speed is low, and, as the engine speed rises, the readings should also rise. But they must be kept under the specified voltage.
- Turn off the ignition switch to stop the engine, and disconnect the hand tester.
- If the regulator/rectifier output voltage is kept between the values given in table, the charging system is considered to be working normally.
- If the output voltage is much higher than the values specified in the table, the regulator/rectifier is defective or the regulator/rectifier leads are loose or open.
- If the battery voltage does not rise as the engine speed increases, then the regulator/rectifier is defective or the alternator output is insufficient for the loads. Check the alternator and regulator/rectifier to determine which part is defective.

Ignition System

WARNING
The ignition system produces extremely high voltage. Do not touch the spark plugs, ignition coils, or spark plug leads while the engine is running, or you could receive a severe electrical shock.

CAUTION
- Do not disconnect the battery leads or any other electrical connections when the ignition switch is on, or while the engine is running. This is to prevent IC igniter damage.
- Do not install the battery backwards. The negative side is grounded. This is to prevent damage to the diodes and IC igniter.

Pickup Coil Removal
- Remove the pickup coil cover.
- Remove the pickup coil.

Pickup Coil Installation
- Tighten the pickup coil mounting bolt to the specified torque (see Exploded View).
- Install the pickup coil cover.

Pickup Coil Inspection
- Disconnect the pickup coil connector.
- Zero an ohmmeter, and connect it to the pickup coil leads.
- If there is more resistance than the specified value, the coil has an open lead and must be replaced. Much less than this resistance means the coil is shorted, and must be replaced.
15-18 ELECTRICAL SYSTEM

Pickup Coil Resistance (x 100 Ω)
355 ~ 535 Ω (BK, Y Lead)

- Using the highest resistance range of the ohmmeter, measure the resistance between the pickup coil leads and chassis ground.
- Any meter reading less than infinity (∞) indicates a short, necessitating replacement of the pickup coil assembly.

WARNING
To avoid extremely high voltage shocks, do not touch the coil or lead.

- If the distance reading is less than the specified value, the ignition coil or spark plug caps are defective.

Ignition Coil Arcing Distance
7 mm or more

- To determine which part is defective, measure the arcing distance again with the spark plug caps removed from the ignition coil.
- If the arcing distance is subnormal as before, the trouble is with the ignition coil itself. If the arcing distance is now normal, the trouble is with the spark plug caps.

Measuring coil resistance:
If the arcing tester is not available, the coil can be checked for a broken or badly shorted winding with an ohmmeter. However, an ohmmeter cannot detect layer shorts and shorts resulting from insulation breakdown under high voltage.
- Disconnect the primary leads from the coil terminals.
- Measure the primary winding resistance.
- Connect an ohmmeter between the coil terminals.
- Set the meter to the x 1 Ω range, and read the meter.
- Measure the secondary winding resistance.
- Pull the spark plug cap off the lead.
- Connect an ohmmeter between the spark plug leads.
- Set the meter to the x 1 kΩ, and read the meter.
- If the meter does not read as specified, replace the coil.

Ignition Coil Winding Resistance

- **Primary Windings:** 2.3 ~ 3.5 Ω
- **Secondary Windings:** 12 ~ 18 kΩ

Ignition Coil Winding Resistance

1. Measure primary winding resistance.
2. Measure secondary winding resistance.
3. Ignition Coil

- If the meter reads as specified, the ignition coil windings are probably good. However, if the ignition system still does not perform as it should after all other components have been checked, test replace the coil with one known to be good.

Ignition Coil Inspection

- Remove the ignition coils.
- Measure the arcing distance with Kawasaki coil tester (special tool: 57001-1242) to check the condition of the ignition coil.

NOTE
- Since a tester other than the Kawasaki coil tester may produce a different arcing distance, the Kawasaki coil tester is recommended for reliable results.

![Ignition Coil Tester and Diagram]

1. Ignition Coil Tester: 57001-1242
2. Ignition Coil
Check the spark plug leads for visible damage.
* If any spark plug lead is damaged, replace the coil.

Ignition System Wiring Diagram

1. IC Igniter
2. 4-Pin Connector
3. 6-Pin Connector
4. 2-Pin Connector
5. Pickup Coil
6. Ignition Coil (for #1, #4 Cylinder)
7. Ignition Coil (for #2, #3 Cylinder)
8. Spark Plugs
9. Starter Switch
10. Engine Stop Switch
11. Ignition Switch
12. Junction Box
13. Starter Circuit Relay
14. Diodes
15. 10-Pin Connector
16. Starter Relay
17. 30A Main Fuse
18. Battery
19. 2-Pin Connector
20. 9-Pin Connector
21. Side Stand Switch
22. Starter Lockout Switch
23. Neutral Switch

Spark Plug Removal
- Remove the following.
 - Air Cleaner Housing
 - Spark Plug Caps
- Remove the spark plugs with the box wrench in the tool kit (P/N: 92110-1146) or the spark plug wrench (special tool: 57001-1262).

A. Spark Plug Wrench: 92110-1146
15-20 ELECTRICAL SYSTEM

Spark Plug Installation Note
● Tighten the spark plugs to the specified torque (see Exploded View).
● Run the spark plug leads correctly (see Cable Routing section in the General Information chapter).

Spark Plug Cleaning and Inspection
● Remove the spark plug, and visually inspect.
● Clean the spark plug, preferably in a sandblasting device, and then clean off any abrasive particles. The plug may also be cleaned using a high flash point solvent and a wire brush or other suitable tool.
★ If the spark plug electrodes are corroded or damaged, or if the insulator is cracked, replace the plug. Use the standard spark plug or its equivalent.

Spark Plug Gap Inspection
● Measure the gap with a wire-type thickness gauge.
★ If the gap is incorrect, carefully bend the side electrode with a suitable tool to obtain the correct gap.

Spark Plug Gap
0.7 ~ 0.8 mm

1. Insulator
2. Center Electrode
3. Plug Gap
4. Side Electrode

IC Igniter Internal Resistance

<table>
<thead>
<tr>
<th>Tester (−)</th>
<th>Tester Positive (+)</th>
<th>Lead Connection</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>2.5</td>
<td>4.4</td>
<td>2.4</td>
</tr>
<tr>
<td>9.8</td>
<td>18</td>
<td>9.6</td>
</tr>
<tr>
<td>39</td>
<td>1.1</td>
<td>1.6</td>
</tr>
<tr>
<td>160</td>
<td>4.4</td>
<td>6.4</td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>1.1</td>
<td>1.1</td>
</tr>
<tr>
<td>160</td>
<td>4.4</td>
<td>4.4</td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>1.1</td>
<td>1.7</td>
</tr>
<tr>
<td>160</td>
<td>4.4</td>
<td>6.6</td>
</tr>
<tr>
<td>E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>3.3</td>
<td>4.9</td>
</tr>
<tr>
<td>170</td>
<td>13</td>
<td>18</td>
</tr>
<tr>
<td>G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>6.1</td>
<td>8</td>
</tr>
<tr>
<td>800</td>
<td>24</td>
<td>32</td>
</tr>
<tr>
<td>H</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>0.15</td>
<td>1.3</td>
</tr>
<tr>
<td>160</td>
<td>0.6</td>
<td>5.2</td>
</tr>
</tbody>
</table>

IC Igniter Terminal

NOTE
★ No measurement is needed on H terminal.

CAUTION
Use only Hand Tester 57001-983 for this test. A tester other than the Kawasaki Hand Tester may show different readings. If a megger or a meter with a large-capacity battery is used, the IC igniter will be damaged.
Electric Starter System

Starter Motor Removal
- Remove the fuel tank.
- Remove the terminal nut of starter motor wiring and take out the mounting bolts.
- Using the socket wrench (special tool: 57001-1268) makes work easy.
- Pull the starter motor upwards with twisting motion.

![Starter Motor and Mounting Bolts](image)

Starter Motor Installation

<table>
<thead>
<tr>
<th>CAUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do not tap the starter motor shaft or body. Tapping the shaft or body could damage the motor.</td>
</tr>
</tbody>
</table>

- When installing the starter motor, clean the starter motor legs and crankcase where the starter motor is grounded.
- Apply a small amount of engine oil to the O-ring.
- Tighten the following fasteners to the specified torque (see Exploded View):
 - Starter Motor Mounting Bolts

Starter Motor Disassembly

- Remove both end covers and pull the armature out of yoke.

![Starter Motor Components](image)
Starter Motor Assembly Note
- Inspect the O-rings if it is not damaged.
- Install the brushes and springs into the end cover holder.
 - Clamp the brush leads with clips on the end cover and fix the springs.

NOTE
- Be careful not to damage the leads and O-rings.

- Pull the armature out from the yoke and install it on the end cover (brush side).
- Fit the alignment projection on the yoke into the notches of the end cover.

Brush Inspection
- Measure the length of each brush.
 - If any is worn down to the service limit, replace the carbon brush holder assembly and the terminal bolt assembly.

Starter Motor Brush Length

| Standard: | 7.0 mm |
| Service Limit: | 3.5 mm |

Commutator Cleaning and Inspection
- Smooth the commutator surface if necessary with fine emery cloth, and clean out the grooves as illustrated.

- Measure the diameter of the commutator.
 - Replace the starter motor with a new one if the commutator diameter is less than the service limit.

Commutator Diameter

| Standard: 24 mm |
| Service Limit: 23 mm |

Armature Inspection
- Using the x 1 Ω ohmmeter range, measure the resistance between any two commutator segments.
 - If there is a high resistance or no reading (∞) between any two segments, a winding is open and the starter motor must be replaced.
- Using the highest ohmmeter range, measure the resistance between the segments and the shaft.
 - If there is any reading at all, the armature has a short and the starter motor must be replaced.
Brush Plate and Terminal Bolt Inspection
- Using the x 1 \(\Omega \) ohmmeter range, measure the resistance as shown:
 - between terminal bolt and brush plate
 - between terminal bolt and (-) brush
 - between terminal bolt and end cover
- If there is any reading, the brush holder assembly and/or terminal bolt assembly have a short. Replace the brush holder assembly and the terminal bolt assembly.

Starter Relay Inspection
- Remove the left side cover.
- Remove the starter relay.
- Connect the hand tester and 12 V battery to the starter relay as shown.
- If the relay does not work as specified, the relay is defective. Replace the relay.

Testing Relay

Hand Tester Range: x 1 \(\Omega \) range

Criteria:
- When battery is connected \(\to 0 \, \Omega \)
- When battery is disconnected \(\to \infty \, \Omega \)

Brush Lead Inspection
- Using the x 1 \(\Omega \) ohmmeter range, measure the resistance as shown.
 - (+) Brush and (+) Terminal
 - (-) Brush and End Cover

- If there is not close to zero ohms, the brush lead has an open. Replace the terminal bolt assembly and/or the brush holder assembly.
15-24 ELECTRICAL SYSTEM

Electric Starter and Fuel Pump Circuit

1. Ignition Switch
2. Engine Stop Switch
3. Starter Button
4. Junction Box
5. Starter Circuit Relay
6. Ignition Coil for #1, #4 Cylinder
7. IC Igniter
8. Fuel Pump Relay
9. Fuel Pump
10. Starter Lockout Switch
11. Starter Relay
12. Battery
13. Neutral Switch
14. Starter Motor
15. 30 A Main Fuse
Lighting System

The headlight beam is adjustable both horizontally and vertically. Headlight aiming must be correctly adjusted both for your safety as well as that of oncoming drivers. In most areas it is illegal to ride with an improperly adjusted headlight.

Headlight Beam Horizontal Adjustment

- Turn the adjusting screw on the headlight rim in or out until the beam points straight ahead. Turning the adjusting screw clockwise makes the headlight beam point to the left.

A. Adjusting Screw

A. Adjusting Bolt

Headlight Beam Vertical Adjustment

The headlight beam is adjustable vertically. If adjusted too low, neither low nor high beam will illuminate the road far enough ahead. If adjusted too high, the high beam will fail to illuminate the road close ahead, and the low beam will blind oncoming drivers.

- Loosen the adjusting bolt and adjust the beam until the beam points straight ahead.
- Tighten the bolt after adjusting the beam.

NOTE

- On high beam, the brightest point should be slightly below horizontal with the motorcycle on its wheels and the rider seated. Adjust the headlights to the proper angle according to local regulations.

Headlight Bulb Replacement Notes

<table>
<thead>
<tr>
<th>CAUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>When handling the quartz-halogen bulbs, never touch the glass portion with bare hands. Always use a clean cloth. Oil contamination from hands or dirty rags can reduce bulb life or cause the bulb to explode.</td>
</tr>
</tbody>
</table>

- Install the dust cover so that the “TOP” mark point up and the cover fits onto the bulb firmly as shown.

A. Top Mark
B. Up
1. Dust Cover 2. Headlight Bulb

*Check the headlight aim after installation.

Headlight Unit Removal/Installation Note
*Install the headlight unit so that the "TOP" mark on the lens points up.

A. Pin Closest to Base.
*Insert the socket by aligning the projection on the triangular mark with the notch and turn the socket clockwise.

A. Triangular Mark B. Projection C. Notch

Turn Signal Light Bulb Replacement Note
*Be careful not to overtighten the lens mounting screws.

Tail/Brake Light Bulb Replacement Notes
*Insert the new bulb by aligning the pins with the grooves in the walls of the socket so that the pin closest to the bulb base is to the upper right.

Turn Signal Relay Inspection
*Remove the seat and right side cover.
*Take the turn signal relay out of the bracket.
A. Turn Signal Relay

- Check the condition or the relay for the following troubles.

1) Neither right nor left turn signals come on at all:
- Check that battery voltage is normal.
- Unplug the relay leads and use an ohmmeter to check that there is continuity (close to zero ohms) between the relay terminals.
- If there is no ohmmeter reading, or if there is several ohms resistance, replace the relay with a new one.
- Turn the meter to the 25 V DC range, connect the (+) meter lead to the brown lead that was disconnected from the relay, and connect the (-) meter lead to the orange lead.
- With the ignition switch on, first switch the turn signal switch to the R and then to the L position. The meter should register battery voltage at either position.
- If it does not, the fuse, ignition switch, or wiring is at fault.

2) Both right or both left turn signals come on and stay on or flash too slowly:
- Check that battery voltage is normal.
- Check that all wiring connections are good.
- Check that the turn signal bulbs and indicator bulbs are of the correct wattage.
- If all of the above check good, replace the relay.

3) A single light on one side comes on and stays on:
- Either the light that does not come one is burned out of the incorrect wattage, or the wiring is broken or improperly connected.

4) Neither light on one side comes:
- Unless both lights for that side are burned out, the trouble is with the turn signal switch.

5) Flashing rate is too fast:
- If this occurs on both the right and left sides, check that the battery is not being overcharged.
- If the magneto and the battery voltage are normal, replace the turn signal relay.
- If this occurs on only one side, one or both of the turn signal bulbs are of too high a wattage.
15-28 ELECTRICAL SYSTEM

Headlight Circuit (U.K. Model):

1. Ignition Switch
2. High Beam Indicator Light
3. Headlight
4. City Light
5. Headlight Switch
6. Dimmer Switch
7. Passing Button
8. 10A Taillight Fuse
9. 10A Headlight Fuse
10. 30A Main Fuse in Starter Relay
11. 15A High Beam Fuse
12. Headlight Relay

Headlight Circuit (other than U.K. Model):
Cooling Fan System

Fan System Circuit Inspection

- Remove the left lower fairing and disconnect the leads from the radiator fan switch.

A. Fan Switch Terminals

- Using an auxiliary wire, connect the radiator fan switch leads.

If the fan rotates, inspect the fan switch.

If the fan does not rotate, inspect the following.
- Fan Fuse (Junction Box)
- Headlight Circuit
- Leads and Connectors
- Main Fuse
- Fan

Fan Inspection

- Remove the following.
 - Air Cleaner Housing
- Disconnect the 2-pin connector in the fan leads.

A. Fan Connector

- Using two auxiliary wires, supply battery power to the fan.

If the fan does not rotate at this time, the fan is defective and must be replaced.

Fan Installation

- Installation is the reverse of removal.

Cooling Fan Circuit

1. Cooling Fan
2. 2-pin Connector
3. Starter Relay
4. Fan Fuse 10A
5. Junction Box
6. Fan Switch
7. Radiator
8. Main Fuse 30A
9. Battery
Fuel Pump

The pump operates when the starter button is pushed on or the engine is running.
- Refer to the Starter Motor section for the Fuel Pump Wiring Diagram.

When fuel level in the float bowl is low, the fuel pump operates to supply fuel into the float bowl.

When the fuel reaches a certain level, the fuel pressure rises, and the fuel pump stops.

Fuel Pump Relay Inspection
- Remove the side cover assembly and take out the fuel pump relay.
- Set the hand tester (special tool: 57001-1394) to the \(\times 1\, k\Omega \) range and make the measurements shown in the table.

<table>
<thead>
<tr>
<th>Range x 1 k(\Omega)</th>
<th>Tester (+) Lead Connection</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(\infty) (\infty) (\infty)</td>
</tr>
<tr>
<td>2</td>
<td>(\infty) (\infty) (\infty)</td>
</tr>
<tr>
<td>3</td>
<td>(\infty) 10 – 100 (\infty)</td>
</tr>
<tr>
<td>4</td>
<td>(\infty) 20 – 200 1 – 5</td>
</tr>
</tbody>
</table>

- If the tester readings are not as specified, replace the fuel pump relay.
- If the tester readings are not normal, check the fuel pump operation.

CAUTION

Use only Hand Tester 57001-983 for this test. An ohmmeter other than the Kawasaki Hand Tester may show different readings.

If a megger or a meter with a large-capacity battery is used, the pump relay will be damaged.

Pump Operation Inspection
- Remove the fuel pump with the fuel filter.
- Prepare a container filled with kerosene.
- Prepare the rubber hoses, and connect them to the pump fittings.
- Connect the suitable pressure gauge to the outlet hose as shown.

1. Fuel Pump
2. Pressure Gauge
3. Outlet Hose
4. Inlet Hose
5. Fuel Filter
6. Kerosene
7. 2-Pin Connector
8. Battery
9. Auxiliary Leads

- Connect the pump leads to the battery using auxiliary wires as shown.
- If the pump operates, check the pump relay.
If the pump does not operate, the pump is defective.
If the pump operates and the pump relay is normal, close the outlet hose while operating the fuel pump.
When the pump stops, read the pressure gauge.
If the pressure gauge reading is out of the specified pressure, the pump is defective.

Fuel Pump Pressure
- **Standard**: 11 ~ 16 kPa

 \((0.11 \sim 0.16 \text{ kg/cm}^2, 1.6 \sim 2.3 \text{ psi})\)

Meters, Gauges

Removal
- Remove the following:
 - Upper Fairing
 - Headlight Unit
 - Speedometer Cable Upper End
 - Wiring Connectors
- Remove the meter unit by taking off the mounting nuts.

CAUTION

Place the meter or gauge so that the face is up. If a meter or gauge is left upside down or sideways for any length of time it will malfunction.

Bulb Replacement
- To remove the wedge-base type bulb, pull the bulb out of the socket.

CAUTION

Do not use bulb rated for greater wattage than the specified value.
Do not turn the bulb to prevent damage to the bulb.

![A. Meter Mounting Nuts](image)

![A. Pull the bulb.](image)
15-32 ELECTRICAL SYSTEM

Meter, Gauge Assembly Note
- Install each lead on the original position shown.

A. Y/W Lead
B. BK/Y Lead
C. BR Lead
D. BK Lead

Water Temperature Gauge Operation Inspection
- Prepare an auxiliary wire, and check the operation of the gauge.

Gauge Operation Test
- **Ignition Switch Position:** ON
- **Wire Location:** Water temperature sensor female connector
 (disconnected)
- **Results:** Gauge should read C when sensor wire is opened.
 Gauge should read H when sensor wire is grounded to engine.

<table>
<thead>
<tr>
<th>CAUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do not ground the wiring longer than necessary. After the pointer swings to the H position, stop the test. Otherwise the gauge could be damaged.</td>
</tr>
</tbody>
</table>

★ If these readings are not correct, the trouble is with the gauge and/or wiring.

A. Sensor Connector
B. Water Temperature Gauge

- Check the water temperature gauge circuit wiring (see Wiring Inspection).
- If all wiring and components other than the water temperature gauge unit check out good, the gauge is defective.
Tachometer Circuit

1. Ignition Switch
2. 6-Pin Connector
3. Tachometer
4. IC Igniter
5. 30A Main Fuse in Starter Relay

6. Spark Plug
7. Ignition Coil (#1, #4)
8. 4-Pin Connector
9. Engine Stop Switch
10. Battery

Water Temperature Gauge Circuit

1. Ignition Switch
2. 6-Pin Connector
3. Water Temperature Gauge
4. 4-Pin Connector

5. Water Temperature Sensor
6. 30A Main Fuse in Starter Relay
7. Battery
Water Temperature Sensor Inspection

- Suspend the sensor in a container of coolant so that the temperature sensing projection and threaded portion are submerged.
- Using an ohmmeter, measure the internal resistance of the sensor across the terminal and the body at the temperatures shown in the table.

Water Temperature Sensor

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>80°C (176°F)</td>
<td>47 ~ 57 Ω</td>
</tr>
<tr>
<td>100°C (212°F)</td>
<td>25 ~ 30 Ω</td>
</tr>
</tbody>
</table>

NOTE

- The sensor and thermometer must not touch the container sides or bottom.

Fan Switch Resistance

- **Rising temperature:**
 - From OFF to ON at 84 ~ 90°C (183 ~ 194°F)
- **Falling temperature:**
 - From ON to OFF at 71 ~ 77°C (160 ~ 170°F)

ON: Less than 0.5 Ω
OFF: More than 1 M Ω

![Image of Water Temperature Sensor and Thermometer](image)

1. Water Temperature Sensor 2. Thermometer

- If the ohmmeter does not show the specified values, replace the sensor.

Fan Switch Inspection

- Using an ohmmeter, check to see that only the connections shown in the table have continuity (about zero ohms).
- If the switch has an open or short, repair or replace it with a new one.

![Image of Fan Switch and Thermometer](image)

1. Fan Switch 2. Thermometer

- Suspend the switch in a container of coolant so that the temperature-sensing projection and threaded portion are submerged.
- Suspend an accurate thermometer in the coolant.

NOTE

- The switch and thermometer must not touch the container sides or bottom.
- Place the container over a source of heat and gradually raise the temperature of the coolant while stirring the coolant gently.
Junction Box

The junction box has fuses, relays, and diodes. The relays and diodes can not be removed.

Fuse Removal
● Remove the seats and the left side cover.
● Unlock the hook to lift up the locking arm.
● Pull the fuses straight out of the junction box with needle nose pliers.
● Pull out the main fuse from the starter relay.

Fuse Inspection
● Remove the fuse (see Fuse Removal).
● Inspect the fuse element.
★ If it is blown out, replace the fuse. Before replacing a blown fuse, always check the amperage in the affected circuit. If the amperage is equal to or greater than the fuse rating, check the wiring and related components for a short circuit.

CAUTION
When replacing a fuse, be sure the new fuse matches the specified fuse rating for that circuit. Installation of a fuse with a higher rating may cause damage to wiring and components.

Fuse Circuit Inspection (ZX400-L1 ~ L4)
● Remove the junction box (see Fuse Removal).
● Pull off the connectors from the junction box.
● Make sure all connector terminals are clean and tight, and none of them have been bent.
★ Clean the dirty terminals, and straighten slightly-bent terminals.
● Check conductivity of the numbered terminals with the hand tester (special tool).
★ If the tester does not read as specified, replace the junction box.

<table>
<thead>
<tr>
<th>Meter Connection</th>
<th>Meter Reading (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - 2</td>
<td>0</td>
</tr>
<tr>
<td>*1 - 3B</td>
<td>0</td>
</tr>
<tr>
<td>6 - 7</td>
<td>0</td>
</tr>
<tr>
<td>6 - 17</td>
<td>0</td>
</tr>
<tr>
<td>1 - 7</td>
<td>∞</td>
</tr>
<tr>
<td>8 - 17</td>
<td>∞</td>
</tr>
</tbody>
</table>

*: U.K. Model
15-36 ELECTRICAL SYSTEM

Fuse Circuit Inspection (ZX400-L5)

<table>
<thead>
<tr>
<th>Meter Connection</th>
<th>Meter Reading (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - 1A</td>
<td>0</td>
</tr>
<tr>
<td>1 - 2</td>
<td>0</td>
</tr>
<tr>
<td>3A - 4</td>
<td>0</td>
</tr>
<tr>
<td>6 - 5</td>
<td>0</td>
</tr>
<tr>
<td>6 - 10</td>
<td>0</td>
</tr>
<tr>
<td>6 - 7</td>
<td>0</td>
</tr>
<tr>
<td>6 - 17</td>
<td>0</td>
</tr>
<tr>
<td>1A - 8</td>
<td>∞</td>
</tr>
<tr>
<td>2 - 8</td>
<td>∞</td>
</tr>
<tr>
<td>3A - 8</td>
<td>∞</td>
</tr>
<tr>
<td>6 - 2</td>
<td>∞</td>
</tr>
<tr>
<td>6 - 3A</td>
<td>∞</td>
</tr>
<tr>
<td>17 - 3A</td>
<td>∞</td>
</tr>
</tbody>
</table>

Relay Circuit Inspection (ZX400-L5)

(with the battery disconnected)

<table>
<thead>
<tr>
<th>Meter Connection</th>
<th>Meter Reading</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 - 11</td>
<td>∞</td>
</tr>
<tr>
<td>12 - 13</td>
<td>∞</td>
</tr>
<tr>
<td>(+) (-)</td>
<td>∞</td>
</tr>
<tr>
<td>13 - 11</td>
<td>∞</td>
</tr>
</tbody>
</table>

(+) : Apply positive lead.
(-) : Apply negative lead.

(with the battery connected)

<table>
<thead>
<tr>
<th>Meter Connection</th>
<th>Battery Connection</th>
<th>Meter Reading</th>
</tr>
</thead>
<tbody>
<tr>
<td>(+) (-)</td>
<td>11 - 12</td>
<td>Not ∞</td>
</tr>
<tr>
<td>13 - 11</td>
<td>11 - 12</td>
<td>Not ∞</td>
</tr>
</tbody>
</table>

(+) : Apply positive lead.
(-) : Apply negative lead.

Starter Circuit
- Remove the junction box (see Fuse Removal).
- Check conductivity of the following numbered terminal by connecting the hand tester (special tool) and one 12 V battery to the junction box as shown.
- If the relay does not work as specified, replace the junction box.

Relay Circuit Inspection (ZX400-L1 ~ L4)

(with the battery disconnected)

<table>
<thead>
<tr>
<th>Meter Connection</th>
<th>Meter Reading</th>
</tr>
</thead>
<tbody>
<tr>
<td>11 - 13</td>
<td>∞</td>
</tr>
<tr>
<td>12 - 13</td>
<td>∞</td>
</tr>
</tbody>
</table>

(with the battery connected)

<table>
<thead>
<tr>
<th>Meter Connection</th>
<th>Battery Connection</th>
<th>Meter Reading</th>
</tr>
</thead>
<tbody>
<tr>
<td>11 - 13</td>
<td>(+) (-)</td>
<td>11 - 12</td>
</tr>
<tr>
<td>11 - 13</td>
<td>(Ω)</td>
<td>0</td>
</tr>
</tbody>
</table>

Diode Circuit Inspection
- Remove the junction box from the motorcycle.
- Pull off the connectors from the junction box.
- Check conductivity of the following pair of terminals.

Terminals for Diode Circuit Inspection
14-12, 14-15, 14-16 (ZX400-L1 ~ L4)
14-12, 14-15, 14-16, 11-12 (ZX400-L5)

★ The resistance should be low in one direction and more than ten times as much in the other direction. If any diode shows low or high in both directions, the diode is defective and the junction box must be replaced.

NOTE
- The actual meter reading varies with the meter used and the individual diodes, but, generally speaking, the lower reading should be from zero to one half the scale.
Junction Box Internal Circuit (U.K. Model: ZX400-L1 ~ L4):

Junction Box Internal Circuit (other than U.K. Model: ZX400-L1 ~ L4):

A. 15 A High Beam Headlight Fuse
B. 10A Fan Fuse
C. 10A Low Beam Headlight Fuse
D. Horn Fuse 10A
E. Diodes
F. 10A Taillight Fuse
G. 10A Headlight Fuse
15-38 ELECTRICAL SYSTEM

Junction Box Internal Circuit (ZX400-L5):

A. Accessory Fuse 10A
B. Fan Fuse 10A
C. Turn Signal Relay Fuse 10A
D. Horn Fuse 10A
E. Ignition Fuse 10A
F. Headlight Fuse 10A
G. Starter Diode
H. Starter Circuit Relay
I. Interlock Diodes
J. Taillight Fuse 10A

Electrical Wiring

Wiring Inspection
- Visually inspect the wiring for signs of burning, fraying, etc.
- If any wiring is poor, replace the damaged wiring.
- Pull each connector apart and inspect it for corrosion, dirt, and damage.
- If the connector is corroded or dirty, clean it carefully.
 If it is damaged, replace it.
- Check the wiring for continuity.
 - Use the wiring diagram to find the ends of the lead which is suspected of being a problem.
 - Connect an ohmmeter between the ends of the leads.
 - Set the meter to the x 1 Ω range, and read the meter.
- If the meter does not read 0 Ω, the lead is defective.
 Replace the lead or the wiring loom if necessary.